
ABRHS PHYSICS  NAME: ______________ 
The Wave Equation 

  side 1 

Let's imagine that we have a long flexible string and that the y-coordinate of the string 
depends on both the x-coordinate and time as given by the following function y(x,t) 

  y = Asin(kx +ωt +ϕ )+ B  
There are five constants in that expression: 
 

A The amplitude of the sine wave 

k 
The wave number, in radians/meter, of the function.  The wavelength of 
the function is given by λ = 2π/k. 

ω 
The angular frequency in radians/second, of the function.  The period of the 
function is given by T = 2π/ω. 

ϕ 
The phase of the function - which basically sets part of the initial 
conditions.  Remember that a cosine and sine are the same function with a 
different phase. 

B The "at rest" height of the string which is the other part of the initial 
conditions. 

 
What would be happening to the string?  First, imagine we freeze the string at time t = 0.  
The string would be in the shape of a sine wave with an amplitude of A (shifted horizontally 
and vertically by the constants ϕ and B, which we will now ignore.)  The wavelength of the 
sine wave depends on the value of k by λ = 2π/k.  If there was no ωt term in the function, then 
nothing would change and the string would be frozen like that.  Now imagine we let time 
advance a little bit.  Instead of the function being basically sin (x) it becomes sin (x + "a little 
bit") - which means the wave would shift to the left a little bit.  With each tiny change in 
time, the wave would shift to the left a little.  In other words, we would have a wave that was 
traveling to the left down the string.  If the time term was -ωt instead, it would move to the 
right. 
 
So how fast is the wave moving?  We know that the period of the wave is 2π/ω, so that is the 
time for one wavelength to go by us, which is given by λ = 2π/k.  Therefor 

  

v = λ
T
=

2π
k

2π
ω

= ω
k

 

 
Now let's do some math.  We will start with our basic function and ignore the initial 
conditions so that we can say 

  y = Asin(kx +ωt) . 
 
We have a function in both time and space.  To see how the function varies in time, we take 
partial time derivatives: 

  

∂y
∂t

= −Aω cos(kx +ωt)

∂2 y
∂t2 = −Aω 2 sin(kx +ωt) = −ω 2 y

 

Finally, we can say 

  
∂2 y
∂t2 = −ω 2 y  

 
Notice how similar it simple harmonic motion - the second (partial) time derivative of the 
function is a negative constant times the function.  Now let's do the same thing, but with 
partial spatial derivatives: 
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∂y
∂x

= −Ak cos(kx +ωt)

∂2 y
∂x2 = −Ak 2 sin(kx +ωt) = −k 2 y

 

 
Again, we can say 

  

∂2 y
∂x2 = −k 2 y  

 
We have something very similar to before.  Notice how we can equate the spatial and 
temporal derivatives terms by 

  
− 1

k 2

∂2 y
∂x2 = − 1

ω 2

∂2 y
∂t2  

 
Which we can finally write as  

  

∂2 y
∂x2 = k 2

ω 2

∂2 y
∂t2  

 
Since v = ω/k and is constant, we can say 
 

One Dimensional Wave Equation:  
  

∂2 y
∂x2 = 1

v2

∂2 y
∂t2  

 
We call this "one-dimensional" because the wave itself is only traveling in one dimension - 
along the string.  We pictured it as a string vibrating in 2 dimensions - but our function could 
very easily have described the tension in the string (easier to imagine a slinky) and the 
string itself would in fact remain flat.   This differential equation says the second spatial 
derivative equals a constant times the second temporal derivative.  When that is true, the 
function represents a wave that moves with a speed that is the inverse square root of the 
constant. 
 
It turns out that we can generalize this into a wave spreading out in three dimensions by 
doing partial derivatives in all three dimensions, and we would write that as  

  

∂2Ψ
∂x2 + ∂2Ψ

∂y2 + ∂2Ψ
∂z2 = 1

v2

∂2Ψ
∂t2  

 
In this case, our function is called Ψ.  This then is usually written in the form 
 

Three Dimensional Wave Equation:  
  
∇2Ψ = 1

v2

∂2Ψ
∂t2  

 
 


