The Wave Equation

Let's imagine that we have a long flexible string and that the y-coordinate of the string depends on both the x-coordinate and time as given by the following function y(x,t)

$$y = A\sin(kx + \omega t + \varphi) + B$$

There are five constants in that expression:

А	The amplitude of the sine wave
k	The wave number, in radians/meter, of the function. The wavelength of
	the function is given by $\lambda = 2\pi/k$.
ω	The angular frequency in radians/second, of the function. The period of the
	function is given by $T = 2\pi/\omega$.
φ	The phase of the function - which basically sets part of the initial
	conditions. Remember that a cosine and sine are the same function with a
	different phase.
В	The "at rest" height of the string which is the other part of the initial
	conditions.

What would be happening to the string? First, imagine we freeze the string at time t = 0. The string would be in the shape of a sine wave with an amplitude of A (shifted horizontally and vertically by the constants φ and B, which we will now ignore.) The wavelength of the sine wave depends on the value of k by $\lambda = 2\pi/k$. If there was no ωt term in the function, then nothing would change and the string would be frozen like that. Now imagine we let time advance a little bit. Instead of the function being basically sin (x) it becomes sin (x + "a little bit") - which means the wave would shift to the left a little bit. With each tiny change in time, the wave would shift to the left a little. In other words, we would have a wave that was traveling to the left down the string. If the time term was - ωt instead, it would move to the right.

So how fast is the wave moving? We know that the period of the wave is $2\pi/\omega$, so that is the time for one wavelength to go by us, which is given by $\lambda = 2\pi/k$. Therefor

$$v = \frac{\lambda}{T} = \frac{\frac{2\pi}{k}}{\frac{2\pi}{\omega}} = \frac{\omega}{k}$$

Now let's do some math. We will start with our basic function and ignore the initial conditions so that we can say

$$y = A\sin(kx + \omega t).$$

We have a function in both time and space. To see how the function varies in time, we take partial time derivatives:

$$\frac{\partial y}{\partial t} = -A\omega\cos(kx + \omega t)$$
$$\frac{\partial^2 y}{\partial t^2} = -A\omega^2\sin(kx + \omega t) = -\omega^2 y$$

Finally, we can say

$$\frac{\partial^2 y}{\partial t^2} = -\omega^2 y$$

Notice how similar it simple harmonic motion - the second (partial) time derivative of the function is a negative constant times the function. Now let's do the same thing, but with partial spatial derivatives:

$$\frac{\partial y}{\partial x} = -Ak\cos(kx + \omega t)$$
$$\frac{\partial^2 y}{\partial x^2} = -Ak^2\sin(kx + \omega t) = -k^2y$$

Again, we can say

$$\frac{\partial^2 y}{\partial x^2} = -k^2 y$$

We have something very similar to before. Notice how we can equate the spatial and temporal derivatives terms by

$$-\frac{1}{k^2}\frac{\partial^2 y}{\partial x^2} = -\frac{1}{\omega^2}\frac{\partial^2 y}{\partial t^2}$$

Which we can finally write as

$$\frac{\partial^2 y}{\partial x^2} = \frac{k^2}{\omega^2} \frac{\partial^2 y}{\partial t^2}$$

Since $v = \omega/k$ and is constant, we can say

One Dimensional Wave Equation:	$\frac{\partial^2 y}{\partial y} = \frac{1}{\partial^2 y}$
	$\partial x^2 = v^2 \ \partial t^2$

We call this "one-dimensional" because the wave itself is only traveling in one dimension along the string. We pictured it as a string vibrating in 2 dimensions - but our function could very easily have described the tension in the string (easier to imagine a slinky) and the string itself would in fact remain flat. This differential equation says the second spatial derivative equals a constant times the second temporal derivative. When that is true, the function represents a wave that moves with a speed that is the inverse square root of the constant.

It turns out that we can generalize this into a wave spreading out in three dimensions by doing partial derivatives in all three dimensions, and we would write that as

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2}$$

In this case, our function is called Ψ . This then is usually written in the form

Three Dimensional Wave Equation: $\nabla^2 \Psi = \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2}$