ABRHS PHysICs NAME:
The Wave Equation

Let's imagine that we have a long flexible string and that the y-coordinate of the string
depends on both the x-coordinate and time as given by the following function y(x,t)

y=Asin(kx+wt+¢@)+ B
There are five constants in that expression:

A The amplitude of the sine wave

K The wave number, in radians/meter, of the function. The wavelength of
the function is given by A = 27/k.

The angular frequency in radians/second, of the function. The period of the
function is given by T = 2/w.

The phase of the function - which basically sets part of the initial

o) conditions. Remember that a cosine and sine are the same function with a
different phase.

The "at rest" height of the string which is the other part of the initial
conditions.
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What would be happening to the string? First, imagine we freeze the string at time t = 0.
The string would be in the shape of a sine wave with an amplitude of A (shifted horizontally
and vertically by the constants ¢ and B, which we will now ignore.) The wavelength of the
sine wave depends on the value of £ by A = 2/k. If there was no ot term in the function, then
nothing would change and the string would be frozen like that. Now imagine we let time
advance a little bit. Instead of the function being basically sin (x) it becomes sin (x + "a little
bit") - which means the wave would shift to the left a little bit. With each tiny change in
time, the wave would shift to the left a little. In other words, we would have a wave that was
traveling to the left down the string. If the time term was -t instead, it would move to the
right.

So how fast is the wave moving? We know that the period of the wave is 27/, so that is the
time for one wavelength to go by us, which is given by A = 2w/k. Therefor
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Now let's do some math. We will start with our basic function and ignore the initial
conditions so that we can say

y = Asin(kx+ wt) .

We have a function in both time and space. To see how the function varies in time, we take
partial time derivatives:
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Finally, we can say
azy 2
——=—
or’ 4

Notice how similar it simple harmonic motion - the second (partial) time derivative of the
function is a negative constant times the function. Now let's do the same thing, but with
partial spatial derivatives:
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Again, we can say
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We have something very similar to before. Notice how we can equate the spatial and
temporal derivatives terms by
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Which we can finally write as
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Since v = w/k and is constant, we can say
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One Dimensional Wave Equation: — =
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We call this "one-dimensional" because the wave itself is only traveling in one dimension -
along the string. We pictured it as a string vibrating in 2 dimensions - but our function could
very easily have described the tension in the string (easier to imagine a slinky) and the
string itself would in fact remain flat. This differential equation says the second spatial
derivative equals a constant times the second temporal derivative. When that is true, the
function represents a wave that moves with a speed that is the inverse square root of the
constant.

It turns out that we can generalize this into a wave spreading out in three dimensions by
doing partial derivatives in all three dimensions, and we would write that as
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In this case, our function is called ¥. This then is usually written in the form
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Three Dimensional Wave Equation: VY
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